A Global Integrated Artificial Potential Field/Virtual Obstacles Path Planning Algorithm for Multi-Robot System Applications

نویسندگان

  • Abdelrahman M. Hassan
  • Catherine M. Elias
  • Omar M. Shehata
  • Elsayed I. Morgan
چکیده

1 Multi-Robot Systems (MRS) Research Group, German University in Cairo, 5th Settlement New Cairo, 11432, Cairo, Egypt ---------------------------------------------------------------------***--------------------------------------------------------------------Abstract In this paper, a global off-line path planning approach is implemented using an energy-based approach Artificial Potential Field (APF) for Multi-Robot Systems (MRSs). A 3-D potential map is created by using simplified potential functions. Both attraction forces between the robots and the goal, and repulsion forces to repel the robots from the obstacles and each other, are calculated to generate the 3-D map. The local minima problem is handled in this paper using the Virtual Obstacles (VOs) approach. The robot path is generated starting from the robot initial position to the goal based on the generated 3D potential map to be followed by the mobile robots. All simulations are done using MATLab and Virtual Robot Experimental Platform (V-REP). On the MATLab side, the APF controller is implemented to build the map and generate robots paths. The robots are controlled to track the paths and visualized in the V-REP environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Evolutionary Artificial Potential Fields and Their Application in Real Time Robot Path Planning

A new methodology named Evolutionary Artificial Potential Field (EAPF) is proposed for real-time robot path planning. The artificial potential field method is combined with genetic algorithms, to derive optimal potential field functions. The proposed Evolutionary Artificial Potential Field approach is capable of navigating robot(s) situated among moving obstacles. Potential field functions for ...

متن کامل

Formation Control and Path Planning of Two Robots for Tracking a Moving Target

This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017